7 research outputs found

    Rotating disk electrodes to assess river biofilm thickness and elasticity

    Get PDF
    The present study examined the relevance of an electrochemical method based on a rotating disk electrode (RDE) to assess river biofilm thickness and elasticity. An in situ colonisation experiment in the River Garonne (France) in August 2009 sought to obtain natural river biofilms exhibiting differentiated architecture. A constricted pipe providing two contrasted flow conditions (about 0.1 and 0.45 m s−1 in inflow and constricted sections respectively) and containing 24 RDE was immersed in the river for 21 days. Biofilm thickness and elasticity were quantified using an electrochemical assay on 7 and 21 days old RDE-grown biofilms (t7 and t21, respectively). Biofilm thickness was affected by colonisation length and flow conditions and ranged from 36 ± 15 ÎŒm (mean ± standard deviation, n = 6) in the fast flow section at t7 to 340 ± 140 ÎŒm (n = 3) in the slow flow section at t21. Comparing the electrochemical signal to stereomicroscopic estimates of biofilms thickness indicated that the method consistently allowed (i) to detect early biofilm colonisation in the river and (ii) to measure biofilm thickness of up to a few hundred ÎŒm. Biofilm elasticity, i.e. biofilm squeeze by hydrodynamic constraint, was significantly higher in the slow (1300 ± 480 ÎŒm rpm1/2, n = 8) than in the fast flow sections (790 ± 350 ÎŒm rpm1/2, n = 11). Diatom and bacterial density, and biofilm-covered RDE surface analyses (i) confirmed that microbial accrual resulted in biofilm formation on the RDE surface, and (ii) indicated that thickness and elasticity represent useful integrative parameters of biofilm architecture that could be measured on natural river assemblages using the proposed electrochemical method

    Electroactivity of phototrophic river biofilms and constitutive cultivable bacteria

    Get PDF
    Electroactivity is a property of microorganisms assembled in biofilms that has been highlighted in a variety of environments. This characteristic was assessed for phototrophic river biofilms at the community scale and at the bacterial population scale. At the community scale, electroactivity was evaluated on stainless steel and copper alloy coupons used both as biofilm colonization supports and as working electrodes. At the population scale, the ability of environmental bacterial strains to catalyze oxygen reduction was assessed by cyclic voltammetry. Our data demonstrate that phototrophic river biofilm development on the electrodes, measured by dry mass and chlorophyll a content, resulted in significant increases of the recorded potentials, with potentials of up to +120 mV/saturated calomel electrode (SCE) on stainless steel electrodes and +60 mV/SCE on copper electrodes. Thirty-two bacterial strains isolated from natural phototrophic river biofilms were tested by cyclic voltammetry. Twenty-five were able to catalyze oxygen reduction, with shifts of potential ranging from 0.06 to 0.23 V, cathodic peak potentials ranging from −0.36 to −0.76 V/SCE, and peak amplitudes ranging from −9.5 to −19.4 ÎŒA. These isolates were diversified phylogenetically (Actinobacteria, Firmicutes, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria) and exhibited various phenotypic properties (Gram stain, oxidase, and catalase characteristics). These data suggest that phototrophic river biofilm communities and/or most of their constitutive bacterial populations present the ability to promote electronic exchange with a metallic electrode, supporting the following possibilities: (i) development of electrochemistry-based sensors allowing in situ phototrophic river biofilm detection and (ii) production of microbial fuel cell inocula under oligotrophic conditions

    Microbial decomposers communities are mainly structured by trophic status in circumneutral and alkaline streams

    Get PDF
    In streams, the release of nitrogen and phosphorus is reported to affect microbial communities and the ecological processes they govern. Moreover, the type of inorganic nitrogen (NO3, NO2 or NH4) may differently impact microbial communities. We aimed to identify the environmental factors that structure aquatic microbial communities and drive leaf-litter decomposition along a gradient of eutrophication. We selected 5 circumneutral (Portuguese) and 5 alkaline (French) streams differing in nutrient concentrations to monitor mass loss of alder leaves, bacterial and fungal diversity by PCR-DGGE, fungal biomass and reproduction, and bacterial biomass during 11 weeks of leaf immersion. The concentrations of inorganic nutrients in the stream water ranged from 5 - 300 ”g L-1 SRP; 0.30 – 5.50 mg L-1 NO3-N; 2 - 103 ”g L-1 NO2-N; and < 4 - 7,100 ”g L-1 NH4-N. Species richness was maximum in moderately anthropized (eutrophic) streams but decreased in the most anthropized (hypertrophic) streams. Different species assemblages were found in subsets of streams of different trophic status. In both geographic areas, the limiting nutrient, either nitrate or phosphate, stimulated the microbial activity in streams of intermediate trophic status. In the hypertrophic streams, fungal biomass and reproduction were significantly lower and bacterial biomass dramatically decreased at the site with the highest ammonium concentration. The limiting nutrients that defined the trophic status were the main factor structuring fungal and bacterial communities whatever the geographic area. Very high ammonium concentration in the stream water most probably has negative impacts on microbial decomposer communities

    Effect of near‐bed turbulence on chronic detachment of epilithic biofilm: Experimental and modeling approaches.

    Get PDF
    The biomass dynamics of epilithic biofilm, a collective term for a complex microorganism community that grows on gravel bed rivers, was investigated by coupling experimental and numerical approaches focusing on epilithic biofilm‐flow interactions. The experiment was conducted during 65 days in an artificial rough open‐channel flow, where filtered river water circulated at a constant discharge. To characterize the effect of near‐bed turbulence on the chronic detachment process in the dynamics of epilithic biofilm, local hydrodynamic conditions were measured by laser Doppler anemometry and turbulent boundary layer parameters inferred from double‐averaged quantities. Numerical simulations of the EB biomass dynamics were performed using three different models of chronic detachment based upon three different descriptors for the flow conditions: Discharge Q, friction velocity u*, and roughness Reynolds number k+. Comparisons of numerical simulation results with experimental data revealed chronic detachment to be better simulated by taking the roughness Reynolds number as the external physical variable forcing chronic detachment. Indeed, the loss of epilithic matter through the chronic detachment process is related not only to hydrodynamic conditions, but also to change in bottom roughness. This suggests that changes in the behavior and dimensions of river bed roughness must be considered when checking the dynamics of epilithic biofilm in running waters

    Differentiated free-living and sediment-attached bacterial community structure inside and outside denitrification hotspots in the river–groundwater interface.

    No full text
    This study assessed the functional significance of attached and free-living bacterial communities involved in the process of denitrification in a shallow aquifer of a riparian zone (Garonne River, SW France). Denitrification enzyme activity (DEA), bacterial density (BD) and bacterial community composition (BCC) were measured in two aquifer compartments: the groundwater and the sandy fraction of the sediment deposit. Samples were collected in wells located inside (IHD) and outside (OHD) identified hotspots of denitrification. Despite high BD values (up to 1.14 × 1012 cells m−3), DEA was not detected in the water compartment (< 0.32 mg N–N2O m−3 d−1). The sandy fraction showed detectable DEA (up to 1,389 mg N–N2O m−3 d−1) and, consistent with BD pattern, higher DEA values were measured in IHD zones than in OHD zones. The BCC assessed by 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) partly supported this result: attached and free-living communities were significantly different (< 30% similarity) but patterns of BCC did not cluster according to IHD and OHD zones. Targeting the denitrifying communities by means of a culture enrichment step prior to 16S rDNA PCR-DGGE showed that the free-living and sediment attached communities differed. Most sequences obtained from DGGE profiles of denitrifying communities were affiliated to Proteobacteria and showed low genetic distance with taxa that have already been detected in aquifers (e.g., Azoarcus sp., Acidovorax sp. and Pseudomonas spp.). This study confirms that in the aquifer the sediment-attached fraction exhibits different functions (DEA) from free-living communities and suggests that this functional difference is related to the communities’ structure
    corecore